پیش بینی، تشخیص و بررسی سینتیک خشک کردن ارقام برنج با استفاده از پردازش تصویر و شبکه های عصبی مصنوعی
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه بوعلی سینا - دانشکده علوم کشاورزی
- نویسنده ایمان گلپور
- استاد راهنما رضا امیری چایجان جعفر امیری پریان جواد خزایی
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1391
چکیده
شناسایی ارقام برنج در کشاورزی مدرن از اهمیت بالایی برخوردار است. از میان عوامل مختلف شناسایی ارقام می توان به شاخص های رنگ و بافت اشاره کرد. تشخیص ارقام برنج با استفاده از بازرسی دستی و بصری بسیار وقت گیر و دارای خطا می باشد. در نتیجه تکنولوژی ماشین بینایی به عنوان روشی جدید می تواند برای استخراج ویژگی های رنگ و بافت به کار برده شود. هدف از این پژوهش شناسایی ارقام برنج با استفاده از این ویژگی ها با کمک پردازش تصویر و شبکه های عصبی مصنوعی و همچنین پیش بینی سینتیک خشک کردن شلتوک با استفاده شبکه های عصبی مصنوعی می باشد. برای تشخیص ارقام برنج، پنج رقم برنج ایرانی به نام های فجر، شیرودی، ندا، خزر و طارم محلی تهیه شدند. شناسایی ارقام با استفاده از شبکه عصبی پس انتشار و همچنین انتخاب خواص با استفاده از روش stepdisc صورت پذیرفت. همچنین در بخش پیش بینی رطوبت شلتوک، آزمایش ها توسط خشک کن لایه نازک در آزمایشگاه انجام شد و ویژگی های رنگی l*a*b* از جعبه ابزار پردازش تصویر در نرم افزار matlab بدست آمد. نتایج شناسایی ارقام نشان داد که میانگین دقت طبقه بندی با استفاده از شبکه با یک لایه پنهان برای شناسایی ارقام شلتوک، برنج قهوه ای و برنج سفید به ترتیب: 3/93، 9/98 و 100% بود. میانگین دقت طبقه بندی با استفاده از ویژگی های بافتی، برای تشخیص ارقام شلتوک، برنج قهوه ای و برنج سفید به ترتیب: 2/92، 8/97 و 9/98% بدست آمد. پس از آنکه ویژگی های رنگی و بافتی باهم ترکیب شدند، شبکه با بیشترین دقت طبقه بندی برای ارقام شلتوک 9/98% ، برای برنج قهوه ای و سفید به ترتیب: 100 و 100% بدست آمد. پس از انجام آزمایش های خشک کردن، این نتایج حاصل شد که دمای هوای ورودی اثر بسیار معنی داری روی ویژگی های رنگی و زمان نهایی خشک شدن داشت. با گذشت زمان مقادیر l* کاهش و مقادیر a* وb* افزایش یافتند. برای پیش بینی رطوبت با کمک شبکه عصبی پس انتشار، شبکه با یک لایه پنهان با توپولوژی 1-7- 5، بیشترین مقدار 963/0r2=، کم ترین مقدار031/0mae=، تعداد چرخه آموزش 18، تابع انتقال لگاریتم سیگموئید در لایه پنهان و تانژانت سیگمویئد در لایه خروجی به عنوان بهترین ساختار شبکه انتخاب شدند.
منابع مشابه
پیش بینی محتوای رطوبتی پیاز خوراکی در طی فرآیند خشک کردن با استفاده از شبکه عصبی مصنوعی
پیاز خوراکی بهعنوان منبع غذایی و همچنین مصارف دارویی، امروزه بسیار مورد توجه قرار گرفته است. با افزایش بیش از پیش تولید پیاز، نیاز به انبارداری، افزایش ماندگاری، کاهش ضایعات و استفاده از پودر پیاز بیشتر احساس میشود. بههمین جهت خشک کردن این محصول بهعنوان یکی از راهکارهای عملی همواره مطرح میباشد. امروزه با توجه به مزایای فناوری هوش مصنوعی، استفاده از شبکههای عصبی مصنوعی در سطح وسیعی برای شب...
متن کاملپیش بینی سطح ایستابی مناطق خشک و نیمه خشک با استفاده از شبکه عصبی مصنوعی و قانون یادگیری Gradient Descent.
متن کامل
مدل سازی و پیش بینی رشد اقتصادی در ایران با استفاده از شبکه های عصبی مصنوعی
شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...
متن کاملسینتیک خشک کردن چای با استفاده از مدل شبکه عصبی مصنوعی
چکیده خشک کردن برگ چای برای نگهداری طولانی مدت از ملزومات می باشد. برگ سبز چای درمحدوده دماهای 35 تا 55 درجه سلسیوس و سرعت های 5/0و7/. متر بر ثانیه هوای ورودی و بازه ی زمانی 0تا 140 دقیقه دریک فرآیند خشک کن آزمایشگاهی خشک شد. بدین منظور 4 نمونه برای هر دما در نظرگرفته شد و تغییرات وزن نمونه ها به طور پیوسته در هر آزمایش ثبت شد. فرآیند خشک کردن چای به روش شبکه های عصبی مصنوعی با چهار بردار ور...
متن کاملتخمین ضریب تبدیل شلتوک با استفاده از شبکه های عصبی مصنوعی در خشک کردن بستر سیال
The objective of this research was to predict head rice yield (HRY) in fluidized bed dryer using artificial neural network approaches. Several parameters considered here as input variables for artificial neural network affect operation of fluidized bed dryers. These variables include: air relative humidity, air temperature, inlet air velocity, bed depth, initial moisture content, final moisture...
متن کاملتخمین ضریب تبدیل شلتوک با استفاده از شبکه های عصبی مصنوعی در خشک کردن بستر سیال
The objective of this research was to predict head rice yield (HRY) in fluidized bed dryer using artificial neural network approaches. Several parameters considered here as input variables for artificial neural network affect operation of fluidized bed dryers. These variables include: air relative humidity, air temperature, inlet air velocity, bed depth, initial moisture content, final moisture...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه بوعلی سینا - دانشکده علوم کشاورزی
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023